Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
2.
J Am Assoc Lab Anim Sci ; 61(4): 344-352, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35688608

RESUMO

Bats are known natural reservoirs of several highly pathogenic zoonotic viruses, including Hendra virus, Nipah virus, rabies virus, SARS-like coronaviruses, and suspected ancestral reservoirs of SARS-CoV-2 responsible for the ongoing COVID-19 pandemic. The capacity to survive infections of highly pathogenic agents without severe disease, together with many other unique features, makes bats an ideal animal model for studying the regulation of infection, cancer, and longevity, which is likely to translate into human health outcomes. A key factor that limits bat research is lack of breeding bat colonies. To address this need, a captive bat colony was established in Singapore from 19 wild-caught local cave nectar bats. The bats were screened for specific pathogens before the start of captive breeding. Custom-made cages and an optimized diet inclusive of Wombaroo dietary formula, liquid diet, and supplement of fruits enabled the bats to breed prolifically in our facility. Cages are washed daily and disinfected once every fortnight. Bats are observed daily to detect any sick bat or abnormal behavior. In addition, bats undergo a thorough health check once every 3 to 4 mo to check on their overall wellbeing, perform sampling, and document any potential pregnancy. The current colony houses over 80 bats that are successfully breeding, providing a valuable resource for research in Singapore and overseas.


Assuntos
COVID-19 , Quirópteros , Animais , Cruzamento , Reservatórios de Doenças , Humanos , Pandemias , Filogenia , Néctar de Plantas , SARS-CoV-2 , Singapura
3.
Cell Rep ; 33(5): 108345, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147460

RESUMO

Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.


Assuntos
Quirópteros/imunologia , Regulação da Expressão Gênica/imunologia , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 7 de Interferon/imunologia , Viroses/imunologia , Animais , Herpesvirus Humano 1/imunologia , Vírus da Influenza A/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Orthoreovirus/imunologia
4.
Cell Mol Life Sci ; 77(8): 1607-1622, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31352533

RESUMO

Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.


Assuntos
Quirópteros/virologia , Vírus da Dengue/fisiologia , Dengue/veterinária , Animais , Australásia/epidemiologia , Linhagem Celular , Quirópteros/imunologia , Dengue/epidemiologia , Dengue/imunologia , Vírus da Dengue/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Malásia/epidemiologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...